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Unsteady heat transfer for flow over a flat plate 

By N. RILEY 
Department of Mathematics, The Durham Colleges, Durham. 

(Received 8 January 1963) 

The boundary-layer flow over a semi-infinite flat plate is investigated. For time 
t < 0 there is the usual steady velocity boundary layer and, neglecting viscous 
dissipation, no thermal boundary layer. At t = 0 a temperature boundary layer 
is initiated without altering the velocity, and the subsequent temperature 
distribution is studied for large and small t. 

1. Introduction 
In  a recent paper Cess (1962) considers the heat transfer from a semi-infinite 

flat plate immersed in an incompressible fluid which, at infinity, has constant 
velocity U, parallel to the plate. For time t < 0 the plate and the fluid have the 
same temperature T,. At t = 0 the plate temperature is changed so that for 
t > 0 the plate is maintained at  a constant temperature T, $. T,. The applied 
heating is assumed to be sufficiently small for the consequent changes in density 
of the fluid to have no effect upon the steady velocity distribution in the boundary 
layer already established on the plate; the Mach number of the flow is also 
assumed to be so small that the effects of viscous dissipation may be neglected. 
Cess considers fluids with Prandtl numbers which are small so that when the 
steady state is reached the thermal boundary layer is very much thicker than the 
velocity boundary layer, and throughout his analysis he replaces the components 
of velocity occurring in the temperature equation by their values in the outer 
region of the velocity boundary layer. In this way he develops a series solution, 
for small r, in powers of r4 where r = U, tlx, x being the distance along the plate 
measured from its leading edge. This procedure he justifies as follows: ‘during the 
initial stages of the heat-transfer process the influence of convection will be small, 
such that any error in the formulation of the velocities should not appreciably 
affect the overall results ’. 

However it is clear that, regardless of the value of the Prandtl number, when 
r is sufficiently small the thermal boundary layer is very much thinner than the 
velocity boundary layer. Hence in the initial growth of the thermal layer, con- 
vection is effected by the velocity components near the wall and so the correct 
procedure is to replace the velocity components by their values near the wall. 
This procedure, carried out in this paper, shows that the correct series expansion 
for small r is one in powers of 7*. The first term of this series, identical with that 
given by Cess, is due to diffusion, which is already in progress before the effects 
of convection become significant. 

For large values of T Cess uses a Laplace transform technique and concludes 
that the steady state is reached abruptly after a finite time at each station x. 
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Whilst the steady-state solution given is the appropriate one for small values 
of the Prandtl number it is difficult to believe that, in any process which involves 
diffusion, a steady state can be attained suddenly in this way. It is shown in Q 4 
below that in the final decay to a steady state the departure from the steady state 
is ultimately concentrated near the wall. The velocity components are therefore 
again replaced by their values near the wall. Although the final decay to the 
steady state cannot be determined by means of a linear perturbation of the 
separable type the steady-state solution is shown to be approached in an 
exponential manner. 

The problem of final decay to the steady state is closely analogous to that 
involved when a semi-infinite flat plate is impulsively set in motion, parallel to 
itself, with constant velocity. Stewartson (1951) and subsequently Kelly (1962) 
have shown that the approach to steady state in that problem cannot be deter- 
mined by means of a perturbation of the separable type. Stewartson shows that, 
as in the present paper, the steady state is approached exponentially and in the 
final decay the departure from it is concentrated near the wall. 

2. Equations of motion 

described in 3 1 are 
The momentum and continuity equations for the boundary-layer problem 

(1)  
au au a 4  
ax ay a 9 7  

u-+v- = 1’- 

au av 
ax ay -+- = 0. 

Here the co-ordinates (x,y) are measured along and normal to the plate 
respectively and (u, v) represent the velocity components in these directions; 
the kinematic viscosity 1’ is assumed to be constant. These equations are inde- 
pendent of the time t since changes in density, associated with changes in the 
plate temperature, are assumed to be so small as not to affect the velocity 
boundary layer already established upon the plate. 

The solution of ( 1 )  and (2) under the boundary conditions 

u = v = o ,  y = o ,  x > o ;  

u-fu,, y+m; 

u = u,, x = 0, y > 0 ;  

is the well-known Blasius solution given by 

u = U,f’(T), v = W L / x ) 4  { d ‘ ( T )  - f ( T ) } ,  

where the similarity variable 7 is defined as 

r = Y(U,/4*, 

f”’+&fl” = 0 ,  
and f satisfies the equation 

with f ( O ) = f ’ ( O )  = 0,  f‘(m) = 1. 

(3) 

(4) 
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The energy equation satisfied by the temperature T is 

aT aT aT a2T 
at ax ay ay2 

-++ -+v -=K- - - ,  (7 )  

where K ,  the thermal diffusivity, is assumed to be constant. The heating due to 
viscous dissipation is neglected in the formulation of (7) as the Mach number 
Mw of the flow is assumed to be small. The boundary conditions satisfied by T are 

(8) I 
T = T,, t = 0 ,  y > 0;  

T = T,, x = 0, y > 0;  

T=T,, y = O ,  t > 0 ,  x > O ;  

T+T,, y+m. 

Here T, and T, are the constant plate and free-stream temperatures and for 
consistency we require M2, 4 (Tw- T,)/T, 4 1. 

At time t = 0, when the plate temperature is suddenly changed, the velocity 
boundary layer is already established on the plate and the solution of (1) and (2) 
is given by equations (4)-(6). To solve equation (7) for the temperature we 
introduce new dimensionless variables 

T-T,  
T,-Tw’ 

6 = -  (9) 

and 7 = u,t/x. (10)  

In  terms of the new variables e,7 and q (7) becomes 

where v = v/K i&he Prandtl number. Equation (1  1) is the appropriate form of the 
energy equation for studying the final decay to steady state. During the initial 
stages of growth of the thermal boundary layer, when the effects of thermal 
diffusion are important, we take a new independent variable 

5= &y/(Kt)+ = g7/@/7)+. (12) 

Written in terms of the variables (5 ,7 )  the energy equation now becomes 

The boundary conditions for equations (1  1) and (13) are 

3. Solution of the energy equation for small 7 
As anticipated in $ 1  we assume that for sufficiently small values of 7 the 

thermal boundary layer, growing within the velocity boundary layer, is very 
much thinner than the latter. The velocity function f may therefore be replaced 

7-2 
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by its series expansion near the wall, in equation (13), when developing the 
solution for small 7. Eventually, for sufficiently large 7, this assumption will not 
necessarily be true and in particular if (r < 1 the thermal boundary layer will 
ultimately become much thicker than the velocity boundary layer. It can be 
shown that for small 7 

f = Lay2 2 - &.aa!2r6 + O(ys) where a! = 0.332, (15) 

and so, retaining only the first two terms of the series forfin equation (13) we have 

(16) 

8(5,7)  = 2 ‘ T p O p ( c )  (93 2 0) .  (17) 

Consider now the possibility of a solution of equation (16) in the form 

P 

From (16) and (17) we see that if p > 0 and $93 is not a positive integer then 
OP(C) satisfies 

1 0;: + 2c@; - 4930, = 0,  

0,(0) = 0,(O3) = 0, 

and hence 0, is related to the parabolic cylinder function D,(z). A solution of 
(18) which tends to zero as 6 + 03 is 

0, = exp ( - iC2) D-zp-l(5J2), (19) 

but this does not satisfy the boundary condition a t  the origin. We conclude that 
a series solution of equation (16) in powers of T must be of the form 

where r is an integer and the functions I$,(<) satisfy inhomogeneous ordinary 
differential equations, the homogeneous part of these equations being of the 
form (18). The series (20)  may be compared with the series solution obtained by 
Cess in powers of 74. The equations satisfied by the functions q50, q51 and q5z are 

q5; + 2cI$; = 0, (21) 

(22) 

(23) 

2a 
$4 + %I$; - 601 = 3 C2$& 

9% + 2C& - w 2  = 7 (69; - 6CI$l) - Es C54& 
2a 8a2 

0-z 

together with the boundary conditions 
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Solutions of these equations, subject to (24), are 

4, = erfcc, (25) 

Further terms of this series may be obtained by retaining more terms of the series 
for f in equation (13); at each stage the details become more tedious. 

The heat-transfer rate across the wall per unit area, Q, is given by 

where R = U,x/v and h is the thermal conductivity. Hence, from (12), (20), 
( 2 5 ) ,  (26) and (37), we have 

.- = 0 . 5 6 4 a k t  - 0.02087 - 0.00052o-8(4.9a - 1) 7% + O ( T ~ ) .  (29) QX 

h(Tw - Too) JR 

The first term of (29) is identical with the first term of the series given by Cess for 
the heat transfer and represents the heat transfer due to pure diffusion. 

4. Solution of the energy equation for large T 
For large values of T we consider the energy equation in the form ( 1  1) .  The 

steady-state solution B,(r) is obtained by neglecting the time-dependent term 
in (1 1); this gives as the equation for 8, 

e; + iaje; = 0, (30) 

with @,(O) = 1, 8,(cO) = 0. (31) 

(32) 6, = 3Yr)/W3)7 

The solution of (30) under the boundary conditions (31) is well known and may 
be written in the form 

where [f"(O)l" m r )  = IVoo [f "(v)l"dv. (33) 

Cess concludes from his analysis that the steady-state solution given by (32) is 
reached abruptly after a finite time at each station x. As stated in 9 1 it does not 
seem reasonable to expect that in any process which involves diffusion a steady 
state will be reached suddenly in this way but rather for each x it will be 
approached gradually as t -+ CQ. Consequently we now seek a perturbation of 
the steady solution (32) to investigate how this steady state is realized. Write 
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with 

If we assume that this perturbation is separable so that 

then, from (35) and (37), 
81(% 7 )  = x ( 4  @(7h (37) 

@I' + $0-f + a(rf' - 1) @ X / X  = 0,  (38) 

where the primes denote differentiation with respect to 7 and the dots differentia- 
tion with respect to r. We see from equation (38) that el(7, r )  can only be written 
in the form (37) provided that one of the two terms in the brackets in the last 
term of (38) may be neglected. However, since f '(0) = 0, no matter how large 
r becomes there will always be a region, near the wall, in which rf = O(1); 
consequently we are not justified in neglecting either of these terms and we 
conclude that O1(y, 7) may not be written in the form (37). 

In  order to investigate the asymptotic form of 4 ( 7 ,  r )  for large 7 note that the 
boundary conditions (36) imply that 8, has a point of inflexion and that, from (35), 
this inflexion is in the neighbourhood of rf'  = 1 or, for large r ,  rq = O(1). Thus, 
in the final decay to steady state, departures from the steady state are concen- 
trated near the wall and so, in equation (35), f and f' may again be replaced by 
the first terms of their series expansions near the wall given by (15). In  the 
analogous problem of the flat plate set in motion impulsively a similar conclusion 
was arrived at  by Stewartson. Watson has recently extended Stewartson's work 
and the author is indebted to him for an opportunity to examine this unpublished 
work. Defining a new variable ( = 7-7 and writing equation (35) in terms of (6 ,  r )  
we have, retaining only the first two terms in the series for f and f I ,  as the equation 
for 8, 

We now assume a solution of equation (39) in the form 

4(t, 4 = AT@) Z(k-9 71, 

where A is a constant and, as r -+ ca, 

Substituting in equation (39) for 8, from (41) and (42) we see that T ( r )  must be 
given from an equation of the form 

(43) 

(44) 

T'/T = -/I?+ U T + ~ + C T - ~ +  ..., 

T = exp ( - 3pr3 + 4 ~ 7 ~  + br +clogr). 

where p, a, b and c are constants to be determined, giving 

No further terms in (43) and (44) need be considered as smaller terms may be 
absorbed into Z ( & r ) .  The functions Z,(() must satisfy, from (40), 

Zn(0) = Z,(oo) = 0, (45) 
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and, in terms of a new variable 

s = (pcr/a”i (at-  1)) (461 

the functions 2,) 2, and 2, satisfy 

2; - sz, = 0)  

Z;-sZ, = -saZo/p, 

2; - sZ, = - s(aZ, + bZ,,)/p, 

where the primes now denote differentiation with respect to s. The solution of 
equation (47) which satisfies the second of the boundary conditions (45) is 

2, = Ai ( s ) ,  (50)  

where Ai (s) denotes the Airy function. The determination of p is an eigenvalue 
problem which is solved by satisfying the boundary condition at 6 = 0. For 
s > 0,  Ai ( s )  has no zeros for finite s but for s < 0, Ai ( s )  has an infinite number of 
zeros a t  s = -s, with 

For the largest contribution to T(7) in equation (41) we take, to satisfy the first 
of the boundary conditions (45), the smallest value, sl, for which equation (51) 

Ai( -sn)  = 0, Ai‘( -sn)  + 0. (51) 

holds. Thus 
s1 = 2.338, 

and the corresponding value of p is 

p1 = s;a2/a = 1.409g-l. (53) 

With 2, given by equation (50) the solution of (48) which satisfies the second of 
the conditions (45) is 

where C, is a constant. The first of the conditions (45) together with equation (51) 
shows that a must be zero. A solution of (49) is similarly given as 

2, = - (a/3pl) s Ai’ ( s )  + C, Ai ( s ) ,  (54) 

2, = -(b/3~,)sAi’(s)+C2Ai(s), (55) 

where C, is a constant, and the same considerations show that b = 0. 
Consider now the equations for 2, and 2,; these are 

since ap1 = a%;, and 
2,“ - sZ, = Cl(Z,” - sz,) + C, sZ,/p,, 

since 2, = C,Z,. Consider first equation (57) for 2,. The solution of this equation 
satisfying the second of (45), assuming that 2, satisfies both the conditions (45)) 

(58) 
is given by 

Z, = C, Z, + (C1/3p1) s Ai’ ( s )  + C, Ai ( s ) ,  

where C, is a further constant. To satisfy the first of the boundary conditions (45) 
we must have, from (51)) C, = 0. An investigation of the equation for 2, shows 
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similarly that C, is zero. Consider finally the equation (56) for 2,. The solution 
of this equation enables us to determine the constant c occurring in equations (43) 
and (44). Thus Z 3  = 2, + C3 Ai (s), 

where C3 is a constant and z3(s) is a particular solution of (56) given by 

(59) 

Ai(s) s 

s 4 ) ) .  (60) -+--+--+--+-- 1 1 s  1 s 2  1 s 3  
12 9s, 10s; 21s: 108s; 

The solution (59) satisfies the second of the boundary conditions (45) and the 
first of these conditions requires - 

Z3( -sl) = 0. (61) 

Equation (61) then determines c,, the value of c appropriate to s,, as 

8s: 5 
315 63 

.( 1 + C1) = __ + - = 0.404. 

The constant C, occurring in equation (59) is determined when the solution for 
2, is investigated and is non-zero. Thus, as 7 --f co, the dominant term in 8, is 
given by 8, = A ,  7ci exp ( - +/?, 7 3 )  {Ai (s) + 0( r3 ) } ,  

where p, and c, are given from equations (53) and (62) respectively. There is such 
a solution for each s, satisfying (51) but the solution given in (63) is the most 
important. The constant A ,  will depend, in some way, upon the initial growth of 
the thermal boundary layer. The heat transfer parameter, defined in equation (28), 
is given by 

(63) 

QX = [F(0)]-1-0~544A,~1+cie~p ( -8/?173){l +0(r3)). (64) 
h(T, - T,) Ra 
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